

Helioviewer

Taming the Avalanche of SDO Data

D.A.N. Müller¹, M. Langenberg², S. Pagel³, L. Schmidt⁴, J. P. García Ortiz⁵, G. Dimitoglou⁶, V. K. Hughitt⁷, J. Ireland⁷, B. Fleck¹

¹European Space Agency, NASA GSFC, USA, ²RWTH Aachen, Germany, ³University of Applied Sciences (HTW) Berlin, Germany, ⁴University of Cambridge, UK, ⁵University of Almería, Spain, ⁶Hood College, USA, ⁷ADNET Systems Inc., NASA GSFC, USA

Abstract

JHelioviewer is a solar image browser geared highly standard for space and data to the world-wide community.

What is JHelioviewer?

- JHelioviewer is an open-source application², implemented in Java and OpenGL
- Uses the most efficient implementation of the JPEG 2000 standard⁴ (Kakadu SDK)
- Can be launched as a stand-alone application or from any web browser using Java Web Start

Quick Tour

- Pick data in Layer Manager
- 2 Layer Controls: Play movies, adjusts filters and overlays
- 3 Zoom and pan movies while playing
- 4 Track solar rotation
- Query event catalogs
- 6 Overlay solar event markers

What can JHelioviewer do?

- Overlay and nest images and movies
- Zoom and pan while playing
- sharpening and gamma correction
- Access all SOHO images, local files in various

Making SDO Data Browsable for Everyone, Everywhere

SDO's AIA instrument takes 16MP images in 10 channels, every 10 sec, $24/7 \rightarrow >1$ Petabyte of science data/year!

Challenges:

- Data access and distribution
- Search
- Visualization

Solution:

- \bigcirc With JPEG 2000: Can compress $4k \times 4k$ image to 1 MB at good visual quality for browsing
- Store all 10 channels at 30 sec cadence \rightarrow 29 GB/day = 10.6 TB/year
- Can keep comprehensive set of browse data online for entire mission (science data: only few months)

Why JPEG 2000?

wavelet-based image standard that supports both compression lossless and lossy compression and offers multiple advantages over other compression schemes:

- Browsing remote image archives via the JPIP protocol: Efficient movie streaming through random code stream access
- Multiple resolution representation: Images at different resolutions are automatically created during the compression process
- Quality layers: Optimize bandwidth usage by streaming remote data at variable quality
- Flexible file format to include rich metadata
- Superior compression performance
- Read/write routines built into IDL

¹http://www.jhelioviewer.org/paper.pdf ²https://launchpad.net/jhelioviewer ³http://www.kakadusoftware.com

4http://www.jpeg.org/jpeg2000/

towards large and complex data sets from SOHO SDO. It is based on the JPEG 2000 efficient compression browsing in generated and can be manipulated in real time. Our implementation¹ is both flexible, scalable and platform-independent. The random code stream access of the interactive JPIP protocol minimizes data transfer and encapsulates meta data. This approach offers a solution to the problem of distributing the vast amount of SDO

- Runs on Linux, Mac OS X and Windows
- Interactively stream and generate movies:
 - Real-time image processing, e.g.
- Query event catalogs
- Display metadata, e.g. solar events
- formats and data from any JPIP server

JHelioviewer Architecture

The JHelioviewer architecture with its basic parts and components: the browser (client), server and the solar event server.